

Q1 FUSION REACTION (10 pts)

Part 1. Energy from fusion reaction (2.8 pts)

1.1 (a)	D-D:	3.270 MeV	0.1 pt
	D-T:	17.59 MeV	0.1 pt

1.1 (b) $E_n = \left(\frac{m_x}{m_x + m_n}\right)Q$	0.6 pts

1.1 (c)	D-D: $E_n = 2.450 \text{ MeV}$	0.1 pt
	D-T: $E_n = 14.05 \text{ MeV}$	0.1 pt

1.2 (a)	D-D: 4.728×10^{-4} kg $(4.680 \times 10^{-4} - 4.775 \times 10^{-4}$ kg) D-T: 1.098×10^{-4} kg $(1.087 \times 10^{-4} - 1.108 \times 10^{-4}$ kg) P	0.25 pts 0.25 pts
	Note: Answers within $\pm 1\%$ of these values are acceptable.	0.25 pt3

1.2 (b)	$5.285 \times 10^{-4} \text{ kg}$ ($5.232 \times 10^{-4} - 5.337 \times 10^{-4} \text{ kg}$)	0.25 pts
	Note: Answers within $\pm 1\%$ of this value are acceptable.	

1.2 (C) 4.181×10^2 kg	0.15 pt

1.2 (d)	3.808×10^6	$(3.769 \times 10^6 - 3.846 \times 10^6)$	0.1 pt
		s within $\pm 1\%$ of this value are acceptable.	

Part 2. Tritium production (3.2 pts)

2.1	2.468 MeV (2.443 – 2.493 MeV)	0.8 pts
	Note: Answers within $\pm 1\%$ of this value are acceptable.	

2.2 (a) $0.597 \text{ g of } {}^{3}_{1}\text{H}$ (0.590 - 0.603 g) 1.0 pt Note: Answers within $\pm 1\%$ of this value are acceptable.

2.2 (b)	2.513×10^5 kg ($2.488 \times 10^5 - 2.538 \times 10^5$ kg)	0.2 pts
	Note: Answers within $\pm 1\%$ of this value are acceptable.	

Part 3. Overcoming the Coulomb barrier (4.0 pts)

3.1 (a) $7.630 \times 10^{-14} \text{ N} \cdot \text{m} (7.553 \times 10^{-14} - 7.706 \times 10^{-14} \text{ N} \cdot \text{m})$ 0.8 pts Note: Answers within $\pm 1\%$ of this value are acceptable. Alternate unit is joules or J.

3.1 (b) $7.115 \times 10^{-14} \text{ N} \cdot \text{m}$ $(7.044 \times 10^{-14} - 7.186 \times 10^{-14} \text{ N} \cdot \text{m})$ 0.8 pts *Note: Answers within* $\pm 1\%$ *of this value are acceptable. Alternate unit is joules or J.*

3.2 (a)	D-D: 1.842×10^9 K (1.824×10^9 -	– 1.860 × 10 ⁹ K)	0.3 pts
	D-T: 1.718×10^9 K (1.701 × 10 ⁹)	$-1.735 \times 10^{9} \text{ K}$)	0.3 pts
	Note: Answers within $\pm 1\%$ of these	values are acceptable.	

3.2 (b)	D-D: 121.5%	(120.3 – 122.7%)	0.15 pts
	D-T : 167.9%	(166.2 – 169.6%)	0.15 pts
	Note: Answers	within $\pm 1\%$ of these values are acceptable	

Part 4. Portable neutron generators (3.5 pts)

Г

4.1	(a) D: $N_{s,D} = 7.566 \times 10^{21} \text{ cm}^{-2} (7.490 \times 10^{21} - 7.642 \times 10^{21} \text{ cm}^{-2})$	0.7 pts
	(b) T: $N_{s,T} = 7.536 \times 10^{21} \text{ cm}^{-2} (7.461 \times 10^{21} - 7.612 \times 10^{21} \text{ cm}^{-2})$	0.7 pts
	Note: Answers within $\pm 1\%$ of these values are acceptable	-

4.2	D-D: 2.005×10^{-5} A ($1.985 \times 10^{-5} - 2.025 \times 10^{-5}$ A)	0.7 pts
	D-T: 6.869×10^{-8} A ($6.801 \times 10^{-8} - 6.938 \times 10^{-8}$ A)	0.7 pts
	Note: Answers within $\pm 1\%$ of these values are acceptable.	- · F

4.3 (a) $8.842 \times 10^{4} \text{ n/cm}^{2} \cdot \text{s} \quad (8.754 \times 10^{4} - 8.930 \times 10^{4} \text{ n/cm}^{2} \cdot \text{s}) \quad 0.2 \text{ pts}$ *Note: Answer within* $\pm 1\%$ *of this value is acceptable.*

4.3 (b)
$$\phi_2 = \frac{D_2^2}{D_1^2} \phi_1 = \left(\frac{D_2}{D_1}\right)^2 \phi_1$$
 0.5 pts

Q2 STERILE INSECT TECHNIQUE FOR MOSQUITOES (10 pts)

Part 1. Absorbed Dose Measurement Using Fricke Dosimeter (4.5 points)

1.1 $P(J h^{-1}) = 5.768 \times 10^{-4} AE$ 0.5 pt (5.710 × 10⁻⁴ to 5.826 × 10⁻⁴ AE) Note: Answers within ±1% of this value are acceptable.

1.2	$P(Jh^{-1}m^{-2}) = \frac{1.442 \times 10^{-4}AE}{\pi r^2} or \frac{4.590 \times 10^{-5}AE}{r^2}$ 1.0 pt
	$(1.428 \times 10^{-4} \text{ to } 1.456 \times 10^{-4}) AE/\pi r^2$ (if with π)
	$(4.544 \times 10^{-5} \text{ to } 4.636 \times 10^{-5})AE/r^2$ (if no π)
	Note: Answers within $\pm 1\%$ of this value are acceptable.

1.3

$$DR = 489.1 Gy h^{-1} (1.0 \text{ pt}); \qquad 1.5 \text{ pt}$$

$$(484.2 \text{ to } 494.0) Gy h^{-1}$$

$$D = 81.5 Gy (0.5 \text{ pt}); (80.70 \text{ to } 82.33) Gy$$
Note: Answers within ±1% of this value are acceptable.

1.4 $0.997 \ \mu mol \ J^{-1}$ $0.5 \ pt$ (0.988 to 1.007) \ \mu mol \ J^{-1} $0.5 \ pt$ Note: Answers within $\pm 1\%$ of this value are acceptable.

1.5	Absorbed dose	No. of photon interactions	1.0 pt
	10	2.081×10^{11} (2.060 to 2.101) × 10 ¹¹	(0.2 pt each)
	20	$\begin{array}{c} 4.161 \times 10^{11} \\ (4.119 \ to \ 4.203) \times 10^{11} \end{array}$	
	30	6.242×10^{11} (6.179 to 6.304) × 10 ¹¹	

40	$(8.239 to 8.405) \times 10^{11}$
50	1.040×10^{12} (1.030 to 1.051) × 10 ¹²

Part 2. Egg Hatch and Dose in SIT (3.5 points)

2.1	11.60 <i>Gy</i> 0.5 p (11.48 to 11.71) <i>Gy</i>	t
	Note: Answers within $\pm 1\%$ of this value are acceptable.	

 2.2
 58.94 min or 58 min & 56 sec.
 1.0 pt

 (58.4 to 59.5) min
 or (58 min 21 sec to 59 min 32 sec)
 1.0 pt

 Note: Answers within ±1% of this value are acceptable.
 1.0 pt

2.3	0.896 cm	1.0 pt
	(0.887 to 0.905) cm	
	Note: Answers within $\pm 1\%$ of this value are acceptable.	

2.4 (a) 0.05343 cm²/g 0.5 pt $(0.0529 \text{ to } 0.0540) \text{ cm}^2/g$ Note: Answers within $\pm 1\%$ of this value are acceptable.

2.4 (b)	14 sheets	0.5 pt
---------	-----------	--------

Part 3. Competitiveness and Dose in SIT (2.0 points)

3.1	0.256	1.0 pt
	(0.253 to 0.258)	
	Note: Answers within $\pm 1\%$ of this value are acceptable.	

3.2	20.21 Gy 1.0 pt
	(20.01 to 20.41) <i>Gy</i>
	Note: Answers within $\pm 1\%$ of this value are acceptable.

Q3 PARTICLES FOR DESTROYING CANCER (10 pts)

Part 1. Proton Stopping Power, Range, and Dose (5.0 pts)

Stopping power is defined as the rate of energy loss per unit 0.2 pt 1.1 path length by a particle traveling through a material. LET is the average <u>energy deposited/transferred to the material</u> 0.2 pt

per unit path length.

1.2	A: Electron	0.2 pt
	B: Photon	0.2 pt
	C: Proton	0.2 pt

1.3
$$\frac{S}{\rho} = -\frac{dE}{\rho dx} = \frac{0.170}{\rho {\beta_v}^2} [F(\beta_v) - 4.31] \qquad 0.5 \text{ pt}$$

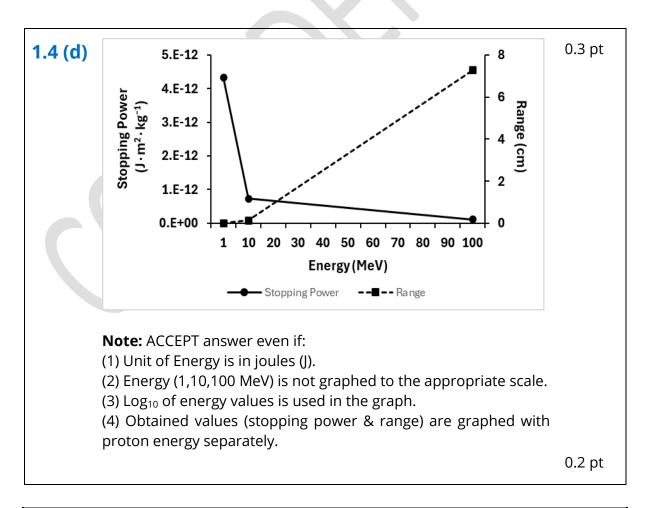
Other acceptable answers: S dE

$$\frac{S}{\rho} = -\frac{dE}{\rho dx} = \frac{0.17}{\rho {\beta_v}^2} [F(\beta_v) - 4.31]$$
$$\frac{S}{\rho} = -\frac{dE}{\rho dx} = \frac{0.17}{(g \cdot cm^{-3}) {\beta_v}^2} [F(\beta_v) - 4.31]$$

4 0 4 1

1.4 (a)	$1 MeV: 0.046 c = 1.38 \times 10^7 m \cdot s^{-1}$	0.25 pt
	$10 MeV: 0.145 c = 4.34 \times 10^7 m \cdot s^{-1}$	0.25 pt
	$100 MeV: 0.428 c = 1.28 \times 10^8 m \cdot s^{-1}$	0.25 pt

1.4 (b)
$$1 MeV: \frac{S}{\rho} = -\frac{dE}{\rho dx} = 269 MeV \cdot cm^2 \cdot g^{-1}$$
 0.25 pt
 $10 MeV: \frac{S}{\rho} = -\frac{dE}{\rho dx} = 45.9 MeV \cdot cm^2 \cdot g^{-1}$ 0.25 pt



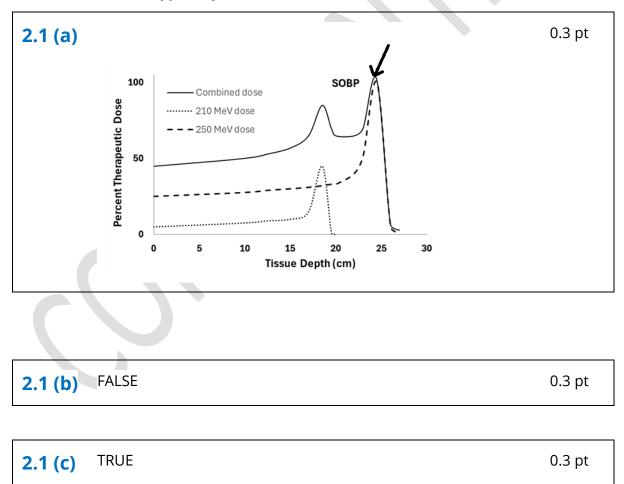
100 MeV:
$$\frac{S}{\rho} = -\frac{dE}{\rho dx} = 7.28 \ MeV \cdot cm^2 \cdot g^{-1}$$

Other acceptable answers:
 $1 \ MeV: 4.32 \times 10^{-12} \ J \cdot m^2 \cdot kg^{-1}$
 $10 \ MeV: 7.35 \times 10^{-13} \ J \cdot m^2 \cdot kg^{-1}$
 $100 \ MeV: 1.17 \times 10^{-13} \ J \cdot m^2 \cdot kg^{-1}$
1.4 (c) $1 \ MeV: 0.00230 \ or \ 2.30 \times 10^{-3} \ cm$
 $0.25 \ pt$
 $0.25 \ pt$
 $0.25 \ pt$

100 MeV: 7.27 cm

0.25 pt

Other acceptable answers: $1 MeV: R = 0.00230 \text{ or } 2.30 \times 10^{-3} \text{ g} \cdot \text{cm}^{-2}$ 10 MeV: $R = 0.129 \text{ or or } 1.29 \times 10^{-1} \text{ g} \cdot \text{cm}^{-2}$ $100 MeV: R = 7.27 g \cdot cm^{-2}$



The mass stopping power decreases, whereas the range of proton increases with increasing proton energy.

1.5
$$D = 1.46 \frac{J}{kg} (or Gy)$$
 0.75 pt
Other acceptable answer:
 $D = 9.11 \times 10^9 \frac{MeV}{g}$

Part 2. Proton Therapy (4.0 pts)

2.2

$$RBE = \frac{D_x}{D_p} = \frac{\sqrt{\left(\frac{\alpha}{\beta}\right)_x^2 + 4D_p\left(\frac{\alpha}{\beta}\right)_x RBE_{max} + 4D_p^2 RBE_{min}^2 - \left(\frac{\alpha}{\beta}\right)_x}}{2D_p}$$
1.0 pt

2.3 (a)	HaCat		0.6 pt
	LET_d	RBE_{2Gy}	(0.2 pt
	1.9	1.06	each)
	2.5	1.08	cacity
	4.5	1.12	
	SKMel		
[LET _d	RBE _{2Gy}	0.6 pt
	1.9	1.16	(0.2 pt
	2.5	1.19	each)
	4.5	1.29	

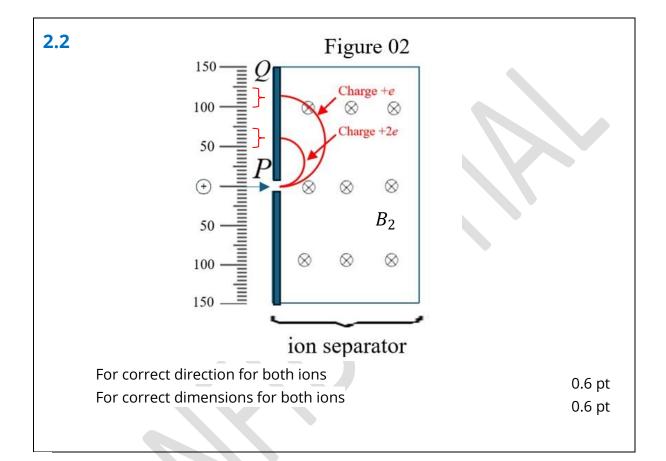
2.3 (b)	<i>RBE</i> increases with increasing LET_d . Higher (or lower) <i>RBE</i> values can be expected for tissues with low (or high) $(\alpha/\beta)_x$ given similar LET_d values.	0.2 pt 0.2 pt
	Note: Exact word usage not required. Accept answers with similar interpretation.	

2.3 (c)	HaCat		0.6 pt
	LET _d	$D_{x}(Gy)$	(0.2 pt
	1.9	2.13	each)
	2.5	2.15	
	4.5	2.24	
			-
	SKMel		
	LET _d	$D_{x}(Gy)$	0.6 pt
	1.9	2.32	(0.2 pt
	2.5	2.38	each)
	4.5	2.57	

Q4 MASS AND ABUNDANCE OF ISOTOPES (10 pts)

Part 1. Basic operation of a Mass Spectrograph (2.1 pts)

1.1	1.923 × 10 ⁻¹⁶ J Accept 1.91 – 1.93	0.3 pt
1.2	1.40 × 10 ⁵ m/s Accept 1.3 – 1.5	0.4 pt
1.3. (a)	oz direction	0.3 pt
1.3 (b)	0.14 T Accept 0.13 – 0.15	0.7 pt
1.3 (c)	140.00 km/s	0.4 pt


Part 2. Motion of ions inside the ion separator (3.2 pts)

2.1	116 cm	0.7 pt

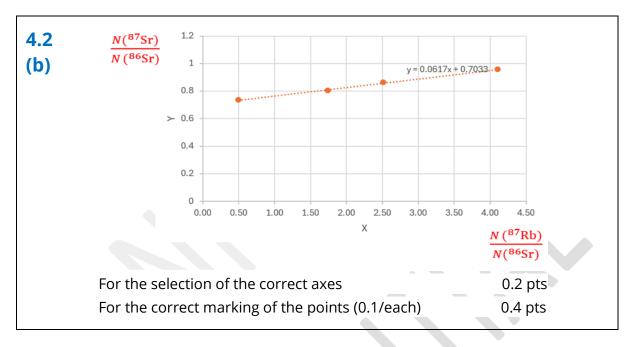
2.2	0.01 u	1.0 pt

Part 3: Mass spectrometers (1.6 pts)

3.1	$m_{min} = 5.51$ u	0.5 pt
	Accept 5.50-5.52	0.5 pt
	$m_{max} = 88.2 \text{ u}$	
	Accept 88.1 – 88.2	

3.2	89.2	0.6 pt
	Accept 89.1 – 89.3	

Part 4: Determining the age of rock samples (3.4 pts)


4.1 (a)
$$N_P(t_1) + N_D(t_1) = N_P(t_0) + N_D(t_0)$$
 0.4 pt

4.1 (b)
$$G = [e^{\lambda(t_1 - t_0)} - 1]$$
 0.7 pt

4.2 (a)	Table 1. Nu	clide ratios for the rock s	amples	0.8 pt
	Rock Sample	<i>N</i> (⁸⁷ Rb)	$N(^{87}\mathrm{Sr})$	(0.1 pt for
		N(⁸⁶ Sr)	N(⁸⁶ Sr)	each entry)
	1	2.51	0.864	
	2	0.50	0.736	
	3	1.74	0.804	
	4	4.11	0.956	

4.2 (c)	Gradient = 0.0617 Accept 0.061 – 0.063	0.3 pt
4.2 (d)	4.15 × 10 ⁹ years ~ 4.2 billion years	0.6 pt

Q5 ADVANTAGES OF USING LOW ENRICHED URANIUM IN NUCLEAR REACTORS (10 pts)

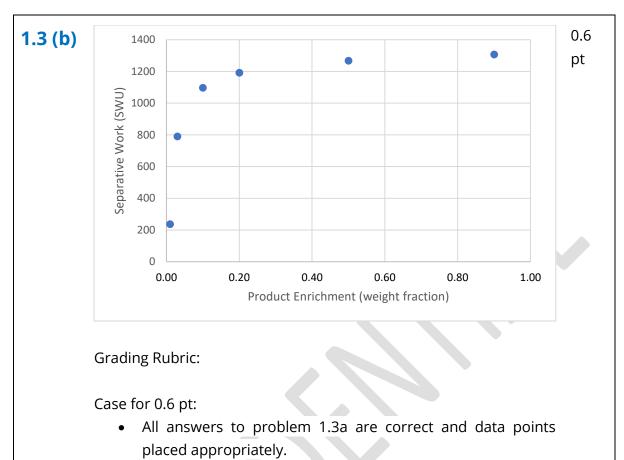
For the boxed results containing numeric answers, three values are given: **low value**, **exact value**, **high value**. Exact value is the result obtained when computations are performed starting from the problem given without rounding-off until final answer. The low and high value corresponds to $\pm 5\%$ of the exact value. **Numerical results ranging from the low value up to the high value are considered correct regardless of how many significant figures are presented.** This was done to accommodate examinee solutions implementing the correct process but failed to follow the instruction not to truncate in intermediate calculations.

Part 1. Uranium Enrichment (3.5 pts)

1.1 (a)	(i)		0.05 pt
		$M_F = M_P + M_T$	0.05 pt
	(ii)		
		$\mathbf{x}_{\mathrm{F}}\mathbf{M}_{\mathrm{F}} = \mathbf{x}_{\mathrm{P}}\mathbf{M}_{\mathrm{P}} + \mathbf{x}_{\mathrm{T}}\mathbf{M}_{\mathrm{T}}$	

1.1 (b)	$M_{\rm F} = \frac{x_{\rm T} - x_{\rm P}}{x_{\rm T} - x_{\rm F}} M_{\rm P}$	0.3 pt
	$M_{\rm F} = \frac{\frac{x_{\rm P}}{x_{\rm P} - x_{\rm T}}}{\frac{x_{\rm F} - x_{\rm T}}{x_{\rm F} - x_{\rm T}}} M_{\rm P}$	
	$M_{\rm P} = \frac{x_{\rm T} - x_{\rm F}}{x_{\rm T} - x_{\rm P}} M_{\rm F}$	
	$M_{\rm P} = \frac{x_{\rm F} - x_{\rm T}}{x_{\rm P} - x_{\rm T}} M_{\rm F}$	
Any of the 4 possible a	answers will merit full credit (0.3 pt)	

1.2 (a)				0.5 pt
	Low Value	Exact Value	High Value]
	170.5 M ₂₃₅	179.5 M ₂₃₅	188.5 M ₂₃₅	
		Or		_
	Low Value	Exact Value	High Value]
	170.5	179.5	188.5	1



1.2 (b)				0.5 pt
	Low Value	Exact Value	High Value]
	180.8 M ₂₃₅	190.4 M ₂₃₅	199.9 M ₂₃₅	-
_		Or		-
Γ	Low Value	Exact Value	High Value]
	180.8	190.4	199.9	

1.3 (a)					1.2 pt
			SWU		0.2 pt
	Х _Р	Low Value	Exact Value	High Value	0.2 pt per
	1.0%	225.4	237.3	249.2	answer for a
	3.0%	750.4	789.9	829.4	given x_P
	10.0%	1042	1097	1152	
	20.0%	1132	1192	1251	
	50.0%	1204	1268	1331	
	90.0%	1241	1307	1372	

Case for 0.4 pt:

• Correct trend of steep climb from 0 to 0.2 weight fraction then gradual increase thereafter. Acceptable even without dots/markers. Acceptable even if the y-axis range is missing or incorrect.

Case for 0.2 pt:

• Examinee wrote values in y-axis regardless of the range

1.3 (c) Difficult for enrichment plants to achieve enrichment from a 0.3 pt lower percentage up to the 20% mark. After the 20% mark, we can see that a lesser amount of work is needed to get to the higher enrichment values.

Or

More work to enrich from low percentage up to 20% than increasing beyond 20% to higher enrichment level.

Grading Rubric:

Full credit is given when any of the following thoughts are expressed:

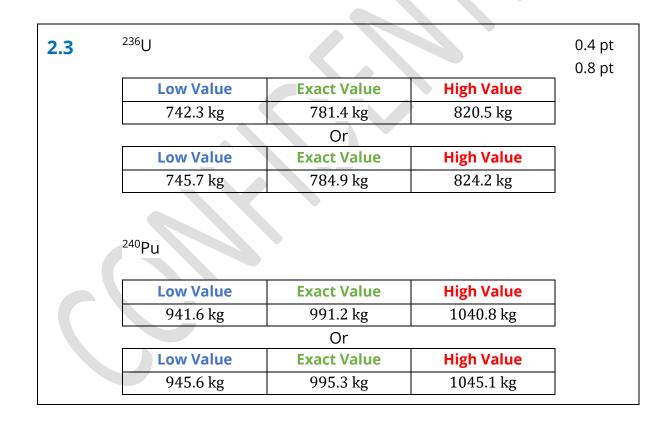
- More effort required to enrich from low value up to 0.2 weight fraction (20% enrichment)
- Less effort required to enrich above 0.2 weight fraction (20% enrichment)

Part 2. Energy from ²³⁵U and ²³⁸U (4.0 pts)

2.1				0.6 pt
	Low Value	Exact Value	High Value	
	3864 kg	4068 kg	4271 kg	

2.2a				0.6 pt
	Low Value	Exact Value	High Value	
	4384 kg	4615 kg	4846 kg	

2.2b	10			0.6 pt
	Low Value	Exact Value	High Value	
	5127 kg	5396 kg	5666 kg	
			•	_


2.2c				0.8 pt
	Low Value	Exact Value	High Value	

$9.295 \times 10^5 \text{ kg}$	$9.785 \times 10^{5} \text{ kg}$	$1.027 \times 10^{6} \text{ kg}$
	Or	
Low Value	Exact Value	High Value
929,500 kg	978,500 kg	1,027,000 kg

	Low Value			
1	Low value	Exact Value	High Value	
	$6.199 \times 10^5 \text{ kg}$	$6.525 \times 10^{5} \text{ kg}$	$6.852 \times 10^{5} \text{ kg}$	
		Or		
	Low Value	Exact Value	High Value	
	619,900 kg	652,500 kg	685,200 kg	

Part 3. Criticality Accident (2.5 pts)

3	•	1

0.5 pt

Low Value	Exact Value	High Value
0.4365 kg TNT	0.4595 kg TNT	0.4825 kg TNT

3.2				1.0 pt
	Low Value	Exact Value	High Value	
	5.279 Sv	5.557 Sv	5.835 Sv	

3.3	Eneutrons				
	Low Value	Exact Value	High Value	0.3 pt	
	178.9 Sv	188.3 Sv	197.7 Sv	0.1 pt	
	E _{total} Low Value	Exact Value	High Value	7	
	Low Value	Exact Value	High Value		
	184.1 Sv	193.8 Sv	203.5 Sv		
	Which type of ionizir	ng Radiation: Neutron or Neutrons			